About Exoplanets-A

General intention

The last twenty years have witnessed an exceptionally fast development in the field of the extra solar planets. While the detection of exoplanets is an important ongoing field of activity, the characterization of their atmospheres has just begun and it is developing very rapidly.

The European Exoplanets-A project is aimed at providing a comprehensive view of the nature of exoplanet atmospheres, through an interdisciplinary approach, which includes the integration of state of the art models of the star-planet interaction, atmospheric chemistry and dynamics and planet formation.

The Exoplanets-A knowledge server provides you with scientific and educational resources through the two main pages: the Science page and the Learning page.

Science intention

The science page includes a knowledge base with a direct access to all the scientific products of the project:

  • Archival data with links to other tools and databases of the NASA and ESA space missions
  • novel methods and tools for characterizing exoplanet atmosphere
  • Coherent and uniform databases of exoplanet and host star parameters
  • Peer-review publications

Learning intention

The Learning page was designed for the general public with educational resources based on the science products:

  • Online courses with videos, MOOC (massive open online course) and SPOC (Small Private Online Course)
  • Serious games: applications in virtual (VR) and augmented (AR) reality
  • Data visualization of exoplanetary system, space instruments, set of data…



The French Alternative Energies and Atomic Energy Commission (CEA) is one of the most prominent players in research and innovation in France. The CEA team in this proposal is part of the Astrophysics Department within the Institute of Research on the Fundamental Laws of the Universe (Irfu) of the Fundamental Research Division of CEA (DRF). DRF gathers 3500 researchers, engineers and technicians and hosts 1200 collaborators from research partner organizations, plus 870 post docs and 690 PhD students. DRF has been involved in 92 projects in the framework of the H2020 EC program, including 20 ERC Grants. The development of astrophysics at the CEA began in the early 1960s with high energy astrophysics. In the 80’s, the activity diversified towards Infrared and visible Astrophysics and nowadays the full wavelength range is covered. Currently the department gathers about 200 researchers, engineers and technicians (including 30 PhD students and 50 postdocs). The department has a proven record in the mastering of space instrumentation and associated ground-segment and in data exploitation (COS-B, Sigma, Integral, XMM-Newton, Fermi, ISO, SOHO, Cassini, HERSCHEL). Currently the department is involved in most of the ESA Astrophysics missions under development: JWST (major participation in the hardware and participation in ground segment activities), Solar Orbiter (hardware), Euclid (leading roles in hardware and ground segment developments), Plato (ground-segment), Athena (hardware and ground-segment); it also participates in the phase A of the Ariel mission (leading role in the instrument) and in the preliminary studies for SPICA. The department is also involved in the CNES led SVOM mission (key hardware development and leading role in the ground segment). All the space projects are developed in partnership with CNES, the French Space Agency. The department comprises four laboratories dealing with Space instrumentation and four laboratories bringing together physicist according to astrophysical themes: Cosmology and Galaxy Evolution, Star Formation and Interstellar Medium, Dynamics of Stars, Exoplanet and their Environment (LDE3 for ‘Laboratoire Dynamique des Etoiles, des Exoplanetes et de leur environment). About 300 publications in refereed journals are produced by year.


INTA (National Institute for Aerospace Technology) is the Spanish Public Research Organization specialized in aerospace research and technology development. Its main responsibilities are the acquisition, maintenance and continuous improvement of all those technologies that can be applied to the aerospace field; to perform all types of tests to check, approve and certify materials, components equipment items, subsystems and systems that have an aerospace application; to provide technical assessment and services to official bodies and agencies, and also to industrial or technological companies; and to act as a technological center for the Ministry of Defence. Since its creation in 1942 by Esteban Terradas, INTA has developed an intense activity, first in the aeronautical field, and later in the ambit of space. During these years, the effort of generations of INTA scientists and technicians has formed the backbone of Spanish aerospace activities and has contributed to the strengthening of the industrial fabric of Spain. INTA is organized in several departments: Aerodynamics and Propulsion; Space Sciences and Electronic Technologies; Materials and Structures; Earth Observation, remote sensing and atmosphere; Aeronautical Programmes; and Space Programmes. Most of the astrobiology basic research is conducted at the Center of Astrobiology (CAB) , a joint institute with the Spanish High Research Council (CSIC). CAB is located in two sites. One of them in the European Space Astronomy Center, and one of the CAB missions is to act as a liasson between the European Space Agency and the Spanish astronomical community.

University of Leicester

The University of Leicester has ~23000 students, employs over 3000 people and has a turnover of around 300 million euros. The Department of Physics and Astronomy (http://www2.le.ac.uk/departments/physics ) has five leading research groups covering astrophysics, space science, earth observation (EO) and knowledge exchange / technology transfer (https://www2.le.ac.uk/institutes/liseo/expertise ). All the University’s space- and EO-related activities have now been brought within the recently formed ‘Leicester Institute for Space and Earth Observation’ (http://www2.le.ac.uk/institutes/liseo ), comprising ~200 staff. The Department has a distinguished record in high-energy astrophysics dating back to 1960, and has played a leading role in many X-ray observatories from Ariel-V to XMM-Newton and Swift. Its astrophysics project  developments now include substantial involvements in the James Webb Space Telescope (JWST; infrared; NASA/ESA/CSA), Cherenkov Telescope Array (CTA; very-high energy gamma rays; international consortium); Athena (X-ray; ESA); SVOM (X-ray; China/France); Gaia (ESA). The Department has a research programme encompassing a wide range of current observational and theoretical astrophysics including: exoplanets and their host stars; brown- and white-dwarf stars; normal, starburst and active galaxies; clusters of galaxies; deep extragalactic surveys; accretion on various size-scales from individual stellar systems to active galactic nuclei. The Department was home to the XMM-Newton EPIC and Survey Science Centre teams, and is home to the UK Swift Science Data Centre. The Department is involved in the infra-red sky survey UKIDSS and the NGTS exoplanet survey. It is a member of the Gaia Data Processing and Analysis Consortium, and had a strong involvement in the development of the Virtual Observatory through its role in the UK.


The Max Planck Institute for Astronomy (MPIA) is consortium partner of this proposal. With more than 60 scientists in the Department of Planet and Star Formation led by Prof. Dr. Thomas Henning, MPIA is well-positioned in the field of exoplanets, and keen to play an important role in proposal. Specific expertise on exoplanet research covers a broad range from infrared instrument development, (space-based) instrument operations, observations and data analysis techniques, numerical (magneto-) hydrodynamical simulations, and radiative transfer studies. The institute is one of 83 research institutes within the Max Planck Society, one of Germany’s most successful research organizations. The more than 15,000 publications each year in internationally renowned scientific journals and 18 noble prize laureates are proof of the outstanding research work conducted at Max Planck Institutes – and many of those articles are among the most-cited publications in the relevant field. The Planet and Star Formation Department at MPIA is pursuing a multi-wavelength approach to characterize the formation of planets in circumstellar disks and the atmospheres of exoplanets. This approach puts a special emphasis on the development of high-resolution techniques and spectroscopy. Our department has significantly contributed to the construction of space instrumentation for the ISO (ISOPHOT), Herschel (PACS) and JWST (MIRI) missions. MPIA is the German lead institute for the development of instrumentation and analysis software for the next astrophysics flagship mission JWST. We have also led and contributed to dedicated instruments for the European Southern Observatory’s Very Large Telescope Interferometer (MIDI, GRAVITY and MATISSE), and the planet finder SPHERE. The institute is also partner in the high resolution spectrograph CARMENES at the Calar Alto observatory and is a major partner in the consortia constructing the E-ELT instruments METIS and MICADO. All of these instruments are ideally suited to characterize planet forming disks and exoplanet atmospheres.

University College London

UCL is a multi-faculty university with 72 departments and covers all areas (many coursecombinations with over 250 different degree programmes to choose from). UCL hosts the largest biomedical research centre in Europe. UCl has 36,000 students, 52% doing graduate studies (52% women and 48% men). 36% of UK students come from minority ethnic groups, 11,250 are international students from outside the EU (150 countries). Overall the staff to student ratio is 1:9. UCL is a university at the forefront of teaching and research: approximately £430M research income annually – consistently ranked in the top 10-20 universities world-wide. 29 Nobel Prize winners were student or staff alumni of UCL. UCL’s Astrophysics Group (http://www.ucl.ac.uk/star/), within the Department of Physics & Astronomy, is one of the largest in the UK, with research covering cosmology, galaxy formationvand evolution, star formation, stellar evolution, planetary science and instrumentation. With its 20vacademic staff members, 24 postdocs and senior fellows, 36 PhD students and 13 (technical andvadministrative) support staff, the Group carries out forefront research in many fields, while our strong instrumentation programme plays a key part in the technologies that makes our science outcomes possible.

University of Wien

The University of Vienna is, with ~96000 students and 9600 employees (of which 6800 are scientists) one of the largest universities in Europe. Its Department of Astrophysics hosts approximately 60 researchers in various groups focusing on star and planet formation, exoplanets and habitability, stellar astronomy, late stages of stellar evolution, the interstellar medium, galaxy formation and evolution, and astrodynamics. Research is conducted both in observational and theoretical domains, the latter supported by high performance computing opportunities with the Vienna Scientific Cluster. The Department leads the largest Austrian national astronomy research program, devoted to studies of the origins of habitable environments on planets. There is significant involvement in instrument development for various space missions, presently CHEOPS (ESA), PLATO (ESA), ARIEL (ESA), SMILE (ESA/China), Gaia (ESA), Athena (ESA), and Spica (proposed; ESA/Japan), with previous contributions to CoRoT (France), MOST (Canada), Herschel (ESA), focusing on on-board software development. The Department also acted as the PI institute of the first Austrian satellite BRITE as part of the BRITE-Constellation network of photometric nanosats, and furthermore hosts a Co-PI of MIRI on JWST (NASA/ESA/CSA). About a decade ago, several research groups got involved in a vigorous program for software contributions to ESO observatories (including MATISSE), now working in a national program contributing to the E-ELT instruments METIS, MICADO, and MOSAIC and including all other Austrian university institutes of astronomy. The Department supports a diverse public-outreach program, including monthly evening talks at the observatory, public guided tours and observations with the historical 68 cm refractor, many public talks and school visits.


SRON Netherlands Institute for Space Research is the national expertise institute for scientific space research. Its mission is to bring about breakthroughs in international space research. As national expertise institute SRON connects the science community, the technological institutes, and industry. SRON was founded in 1961 and now hosts around 130 permanent staff members. The staff is a combination of engineers, instrument scientists and scientists, providing the expertise triangle needed to go from concept to realisation of space hardware to harvesting and analysis of data. SRON has often been leading in missions (e.g. Herschel/HiFi and currently co-PI for ATHENA/X-IFU). The institute has a long history in infrared and X-ray missions including data analysis and instrument calibration.